Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | −h3+h1 | g7 | g6 | g3 | g1 | g8 |
weight | 0 | ω1 | ω1 | ω2 | ω2 | ω1+ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω1−4ψ | ω1+2ψ | ω2−2ψ | ω2+4ψ | ω1+ω2 |
Isotypical components + highest weight | V0 → (0, 0, 0) | Vω1−4ψ → (1, 0, -4) | Vω1+2ψ → (1, 0, 2) | Vω2−2ψ → (0, 1, -2) | Vω2+4ψ → (0, 1, 4) | Vω1+ω2 → (1, 1, 0) | |||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | |||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1 −ω1+ω2 −ω2 | ω1 −ω1+ω2 −ω2 | ω2 ω1−ω2 −ω1 | ω2 ω1−ω2 −ω1 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | |||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1−4ψ −ω1+ω2−4ψ −ω2−4ψ | ω1+2ψ −ω1+ω2+2ψ −ω2+2ψ | ω2−2ψ ω1−ω2−2ψ −ω1−2ψ | ω2+4ψ ω1−ω2+4ψ −ω1+4ψ | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | |||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1−4ψ⊕M−ω1+ω2−4ψ⊕M−ω2−4ψ | Mω1+2ψ⊕M−ω1+ω2+2ψ⊕M−ω2+2ψ | Mω2−2ψ⊕Mω1−ω2−2ψ⊕M−ω1−2ψ | Mω2+4ψ⊕Mω1−ω2+4ψ⊕M−ω1+4ψ | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | |||||||||||||||||||||||||||
Isotypic character | M0 | Mω1−4ψ⊕M−ω1+ω2−4ψ⊕M−ω2−4ψ | Mω1+2ψ⊕M−ω1+ω2+2ψ⊕M−ω2+2ψ | Mω2−2ψ⊕Mω1−ω2−2ψ⊕M−ω1−2ψ | Mω2+4ψ⊕Mω1−ω2+4ψ⊕M−ω1+4ψ | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 |